首页> 外文OA文献 >Direct nonlinear Fourier transform algorithms for the computation of solitonic spectra in focusing nonlinear Schr'odinger equation
【2h】

Direct nonlinear Fourier transform algorithms for the computation of solitonic spectra in focusing nonlinear Schr'odinger equation

机译:直接非线性傅里叶变换算法   聚焦非线性schr \“odinger方程的孤子谱

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Starting from a comparison of some established numerical algorithms for thecomputation of the eigenvalues (discrete or solitonic spectrum) of thenon-Hermitian version of the Zakharov-Shabat spectral problem, this articledelivers new algorithms that combine the best features of the existing ones andthereby allays their relative weaknesses. Our algorithm is modelled within theremit of the so-called direct nonlinear Fourier transform (NFT) associated withthe focusing nonlinear Schr\"odinger equation. First, we present the data forthe calibration of methods comparing the relative errors associated with thecomputation of the continuous NF spectrum. Then each method is paired withdifferent numerical algorithms for finding zeros of a complex-valued functionto obtain the eigenvalues. Next we describe a new class of methods based on thecontour integrals evaluation for the efficient search of eigenvalues. Afterthat, we introduce a new hybrid method, one of our main results: the methodcombines the advances of contour integral approach and makes use of theiterative algorithms at its second stage for the refined eigenvalues search.The veracity of our new hybrid algorithm is established by estimating theconvergence speed and accuracy across three independent test profiles. Alongwith the development of a new approach for the computation of the eigenvalues,our study also addresses the problem of computation of the so-called normingconstants associated with the eigenvalues. We show that our formalismeffectively amounts to accurate and fast enough computation of residues of thereflection coefficient in the upper complex half-plane of the spectralparameter.
机译:从对Zaherrov-Shabat频谱问题的非Hermitian版本的特征值(离散或孤子谱)的一些已建立的数值算法进行比较开始,本文提供了结合了现有算法的最佳特征的新算法,从而消除了它们的相对特征弱点。我们的算法是在与聚焦非线性Schr'odinger方程有关的所谓直接非线性傅里叶变换(NFT)的范围内建模的。首先,我们提供了用于校正与连续NF谱计算相关的相对误差的方法的数据然后将每种方法与不同的数值算法配对,以找到复数值函数的零点以获得特征值,接下来,我们将描述基于轮廓积分评估的一类新方法,以有效地搜索特征值,然后,引入一种新的混合方法,这是我们的主要结果之一:该方法结合了轮廓积分法的先进技术,并在第二阶段使用迭代算法进行特征值搜索。通过在三个独立测试中估算收敛速度和准确性,建立了新混合算法的准确性。简介。随着计算新方法的发展在特征值中,我们的研究还解决了与特征值相关的所谓规范常数的计算问题。我们证明我们的形式主义有效地准确地和快速地计算了光谱参数的上复半平面中的反射系数的残差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号